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Learnability of periodic activation functions: General results
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On-line learning in the presence of continuous periodic activation functions is studied analytically. The
effect of the ambiguityan infinite number of inputs with different local fields can produce the same gutput
the learnability is examined. A universal interplay between the general features of the activation function
(wave number, parity, etcand the critical learning rate is found. Analytical results are extended also to
multilayer architectures with nonlinear output units. Results are compared with simulations.
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The theory of learning has benefited to a great extent from It remains an open question precisely which features of
the application of statistical physics methods, see glgR]  the activation functions determine the properties of the learn-
for reviews. Statistical mechanics provides the tools to invesing network.(a) Does a universal behavior exist in the sense
tigate, for instance, large neural netwof®$, learning a rule  that there is an interplay between general features of the
from randomized example data. It allows one to calculateactivation function and, for instance, the critical learning
typical properties, such as the generalization error, whictiate?(b) Is the above mentioned exponential asymptotic de-

quantifies the average amount of disagreement betseen €2y 2 direct consequence of the continuous nature of the
dentand unknown rule. activation or is it crucial that the function is monotonic and
Jdpvertible?(c) How does the critical learning rate depend on
: : - . the above properties(?) What is the relevance of symme-
so-called on-line learning proces and was initiated in R . :

gp s8] tries in the transfer functiong®) Will new classes of behav-

[5,6]. From a practical point of view, on-line learning is par- ior emerge when the scope of possible characteristics is ex
ticularly attractive because it uses only the latest from a se- 9 ; P PC

. . . tended?(f) What is the effect, if any, on the nature of
guence of examples for training. This obviously reduces the

. . . .. plateaus in the learning process of multilayer architectures
storage needs and computational effort in comparison wnlﬁ/- - -
. L -with nonlinear output units?
memory based off-line prescriptions. On the other hand, this

. , i X ) In order to address and investigate these questions we
very property makes it possible to investigate a variety Ofgqy in this paper neural networks with continuous but pe-

learning scenarios analytically. The learning dynamics is dejogic activation function. In such networks an infinite num-
scribed exactly in terms of coupled differential equations forper of different local fields or internal representations can
self-averaging order parameters in the thermodynamic "mitproduce the same output. Due to this ambiguity an example
A most remarkable outcome of this theory is that the per{£ r(£)} contains less information about the rule than in
formance of efficient on-line algorithms is, despite their sim-cases where the transfer functions are invertible. We will
plicity, comparable with that of sophisticated off-line or investigate here to what extent this property affects the dy-
batch prescription§6—9]. Among the different architectures namics of learning.
that have been studied in this framework are such diverse Throughout the following we restrict the analysis to
systems as the simple perceptrda.g., [5,6]), specific teacher-student scenarios with perfectly matching network
multilayer networks of threshold unit&.g., [10,11]), and  architectures. Training is guided by the quadratic deviation
two-layered structures constructed from continuous units(&)=[o(&— 7(&]%2, which compares the student’s re-
[12-14. sponses with the rule or teacher outputfor a given high-
Apart from perhaps one exception, the so-called reversedimensional input vectofe RN. Accordingly, the generali-
wedge perceptrofil5], all networks investigated so far con- zation error is defined as the average(£)) over the
sist of units with monotonic activation functions, where thedistribution of inputs. Throughout this paper we will con-
most prominent examples are continuous sigmoidal or lineasider random vector§ with independent, identically distrib-
units and discontinuous threshold neurons. For the latter theted components of zero mean and unit variance.
generalization error approaches its minimum value according Upon the presentation of a single example input-output
to a power law with the number of examples, in genézal.,  pair {&*, 7= 7(£&")} the vectorW of all adjustable param-
[7,9)). In contrast, an exponential decay is typical for net-eters in the student network is updated according to the fol-
works consisting of units with differentiable sigmoidal acti- lowing stochastic gradient descent prescription:
vations, provided the learning rate is smaller than some criti-

One successful line of research concerns the physics

cal value 7. [12,13. Furthermore, nontrivial transient - e N i

behavior of these systems, like the occurrence of quasista- W) =W(p=1)= NVWE(?&)'W(M*D’ @)
tionary plateau states in the learning dynamics, can be theo-

retically understood within this framewofid1,13,14. where the same learning ratg is used everywhere in the
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network. The vectoM includes in the following only the process. Thus, any mismatched vaki k in the student
weights of the student networfinput-to-hidden as well as  could be compensated for by tuni@=J? such thaty/Q k
hidden-to-outpyt We plan to study the adjustment of addi- —_
tional parameters like the phases of the considered activation In order to calculate the genera”zation error we observe
function in the formalism. that the randomness of the input enters only through the
Note that so far only two-layered systems with linear out-quantitiesx=J- £ andy= B- £ which are distributed accord-
eration of periodic activations enables us to extend this for—g (x2y=Q, (y2)=1, and(xy)=R=J-B. We obtain
malism to networks of several layers with nonlinear units in
each layer. The details of the solution and its mathematical eg=%[1—A,+[A+—%(e‘2k2Q+e‘2k2)]cos{20)] (5)
insight will be presented after the discussion of the percep-
tron. whereA , —e K (1+Q=2R)2
As a first example we consider a teacher-student scenario |earning proceeds according to the on-line gradient de-
with matching single unit networks. Normalized teacherscent prescriptioril), here the change of weights upon pre-
weightsB e RN,B2=1 define the rule output sentation of examplé&”, m#=g(y*)} is

m(§)=9g(y)=sin(ky+ 6) )

with y=B- & for any N-dimensional input vectoé. The ad-
ditional parameterk and 6 fix the wave number and phase :
of the pgriodic activation function, respectively. P with x#=J(p=1)-&". ®

The above mentioned ambiguity is most clearly studied inFgjiowing the method described at length in e[d.2,13,
the single node. For sigmoidal activationsis uniquely de-  recyrsion relations for the self-averagi(u)=J(x)-B
termined by 7 and, assuming the activation function is ang Q(u)=J2(u) are derived which become, in the limit
known, each example provides a linear equation of the formy _, .. " differential equations in continuous time= u/N.
B-§=g"*(7). Here, however, an infinite number of overlaps The average over the sequence of independent veétixs
produces the same output: performed as outlined above and one obtains the determinis-
tic equations of motion

Hw)=Ipu—1)— %(0’“— )k cogkx+ 6) &

(Yo =1(Y,) With y,=y,*2@n/k, neN. (3

. o . . dR  7k?
Due to this ambiguity, an examp|{&, 7} contains less infor- — = ﬁ_{[(R+ 1)A+—2Re*2k2Q]co§\20)—(R—1)A_},
mation about the unknown rule than in cases with sigmoidal “¢ 2
i.e., invertible monotonic transfer functions. ™

In general one would expect that the density of valyes
has a _fini'Fe vyidth for reglistic data: The as_sumed specificd_: 7k?{[(R+ Q)A+—2Qe*2"2Q]cos(20)—(Q—R)A,}
input distribution results in a Gaussian density wi§h)=0 «

and(y?)=1. The numbeiM . of overlapsy in the range 72k

—1<y<1, which can be assigned to the same output, in- + [2(e2Q—g 2°_B 1A, )cog26)+3
creases linearly witlflarge k. Thus the wave number is a 8

direct measure of how pronounced the effect of the ambigu- —A*—2A_+(2B _e8K%Q_p4 )cog46)] ®
ity will be. - - * *

The complexity of learning® examples in the case of . _ _—K2(1+9Q+6R)/2
invertible monotonic transfer functiondike tanh) is the with A, from Eq. (5) andB, e 1i0= 0%,
same as solving? linear equations withN variables {
weights of the studeitIn contrast, the case of learniig
examples with periodic activation functions results in

First we observe that for all values @fa configuration
with R=Q=1 that corresponds to perfect learning, € 0)
is a fixed point of Eqs(7) and (8). The corresponding lin-
earization of the system is of the forrd/de (R,Q)"
M oo kP 4 =M(LD(1-R1-Q)" where the matrixV(1,1) has one
eigenvalue that is linear iy and always negative. The sec-
possible different sets d? linear equations, due to the am- ond one has a quadratic term 4nand becomes positive for
biguity (3). Therefore, the learning process in the case ofearning rates larger than the critical value
periodic functions has to overcome two difficultig$) to

2
find the most appropriate set of equalities among exponen- 8 e ?cog26)+1
tially many with the size of the training sBtand(ll) then to e 2 3+e 8 cog46)+4e 2 cog26)’
solve the set of equalities as for monotonic activation func-
tions. which indicates that perfect learning is only possible for

The single weight vectod e RN parametrizes the student < 7.. Provided this condition is satisfied, the generalization
hypothesis o(§) =sinkJ- £+ 6) about the unknown rule, error decreases likeyxexd—\a] for large «, ie., its
whereas the correct values éfandk are taken to be known asymptotic behavior is similar to the case of invertible trans-
in advance. Note that assuming knowledge of the wave nurfer functions.
ber does not constitute a restriction of our model since the The generic behavior of the critical learning rate for small
norm of the student weights will not be fixed in the learningwave numbersk—0 is 7.xk 2. For the special cas®
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N

=0 [g(X)=sin(kxX)] we obtain, for instancey.~ 2/k?, which Q 4

coincides with the well-known result for the linear percep- 3

tron [3]. Note that by expanding Ed6) for k—0 and 6

=0 one obtains a linear update of the foru)—J(u

—1)=— (k) (x*—y*) &". Z
Only the exceptional,even activation function g(x)

=coskx) (6=m/2) yields the much larger value 2K for 1.

small wave numbers. One can show that(6=m/2) L

> n.(0#=0) holds true for all values ok. This seems to N

contradict the intuition that learning should be harder for 0.5

even activation functions since the ambiguity affects the

most probable inputssmall local field$. Note, however, that

the above consideration concerns the asymptotic properties, R

but the initial decrease ofy for R<1 is faster for the acti- FIG. 1. Fixed points @) for g(x)=sin() in the limit 7—0,

vation sinkx). ) solid lines display the zeros ofR/da (7), dashed lines correspond
It can be shown that the interplay of the general expandg, 4o/da=0 in the allowed regiorQ>R?. Arrows indicate the

able activation functiorg(x) and the critical learing rate girection of the temporal evolution according to the signs of the

has the following form: right-hand side of Eqg7) and(8).

o N W u

limg(x)=a,+ X, an (kx)™= gk 2M0  (9)
m:mo

k—0 =1

M
726(2 Uig(yi))v where y;=B;- &V, (10

in the limit k—0. ] i ) ~

The limit k— o corresponds to a highly oscillatory behav- Where M is the number of hidden units arg{g) are the
ior of the activation. Independent of the specific valuegof activations of the hiddertoutpu units andv; denote the
one finds that the critical rate decreases fike:1/k? in this hidden to output weights. The student is assumed to have the
limit. This universal behavior reflects that successful learnSame architecture and internal fietds=J;- £V). A learning
ing is hindered drastically by the ambiguity discussed aboveRrocess of the forn(1) is taken to modify the adjustable

The exceptional properties of the activatiog(x)  WeIgNts{Ji Wi}i—12.. .- .
=cosk) are related to the fact that in this particular case the ~For simplicity we concentrate on the prototype multilayer
output(and thus alsa,) is invariant under a sign change of net withM =2 hidden units withg(x) =g(x) =sin(kx). The
all weights @,=0), which is reflected in the existence of explicit form of the student output is = sinfk{w;sin(kx,)
fixed points withR=0 in the system(7), (8). +w,sinkx)]} and the quadratic deviation is= (o — 7)2%/2.

In the limit »—0 the quadratic term in Eq8) can be Using standard trigonometric identities, (similarly 7) can
neglected and learning proceeds on a rescaled time geale be rewritten:
The following features distinguish the behavior in compari-

son to invertible activation function&a) The number of fixed o=sinMw;ksin(kx;)]cogwyk sin(kx,)]
points In addition to the attractive configuratioRE 1,Q ) ) )
=1) we find, independent df, for the cos activation, the +cogw,ksin(kxy) Jsifwak sin(kxz)].  (11)

attractive fixed point {1,1) with ;=0 due to symmetry _

and repulsive stationary stat¢8,0) and (0,1/3. Learning Furthermore, relations of the form

requires initial knowledgg¢R(0)|>0 in order to break the

+J symmetry. In finite systems fluctuations will guarantee ~

R(0)=0(1/4/N), a macroscopic overlap will be achieved sifw sin(kx)]=2 20 Jomr(w)sin(2m+1)kx] (12)
after a characteristic time of orderNM[14]. For the sin case me
g?.alsggglliy\s/;nlee %(;(r-rfgogoggnggg?f Sl:;n,t?hoef rgtem?ésrter%nable us to write the output as a linear combination of per-

of repulsive fixed points increases with which also reflects ceptrons with all wave ngmbera K, in.tegerm, weighteq by
the ambiguity Eq(4). (b) Flow Q—c: The solid line in Fig. appropriate Bessel functions. The trigonometric relatitt)

~ _ ~ ) and the expansiofil2) are crucial for the extension of the
1 marks a separatri®Q(R): for Q>Q(R) the student is un- 5a1vsjs to multilayered networks. Such mathematical sim-

able to learn and the length dfdiverges asv—ce. This can  pjifications are not available in the case of sigmoidal activa-
be understood in the context of the ambiguity problem as;: ;

: ion functions.
largeQ corresponds to an effective large wave numgerk We obtain the equations of motion

in the student unit.
Next we extend the formalism to networks with one hid- _ s\ _ _ . 2/ o2
den layer and nonlinear hidden and output units. We con- dR/da=n(dyi),  dQ/da=27(3ux)+ n(d).

sider a rule given by the nonoverlapping teacher network (13
NM:M:1  where the NM-dimensional input £ dw; /da= 7(di2y;),
=&Y, ... &M consists ofM disjoint subsets, each of

which is available to only one of the hidden nodes where y, is given by
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15 ' ' ' Again, the configuration of perfect learning,=0, is a
' fixed point of the dynamicél3), which is attractive for small
enough learning rates. In the linkit— o, the critical value is
found to bexn.=1/k* independent of the actual phases in the
activation of different units.

In contrast, whenk—0, one obtains, for instance, for

+Ry,

AQy g(x)=g(x)=sinkx) [coskX)] the critical rate Me
L oR ] «1/k* (1/k8), respectively. The general rule from which the
0.5 P > sz ] scaling of . with smallk can be obtained is
X W,y
* Wy |
0.0F . . 7:x 1NV 5€)?
0 20 40 60

A for generalJ;. One derivative is due to the form of the

FIG. 2. Learning curves for I2:2:1 with g(x)=sin(x). Solid  learning algorithm, Eq(1), and the second factor stems from
lines are the result of numerical integration, Efj3), with »—0,  the asymptotic expansiah— B;. This is consistent with the
symbols correspond to simulations with=80, =0.02 averaged above result9) for the single node.
over 20 independent runs. Standard error bars would be approxi- The extension of the presented analytical approach to
mately the size of the symbols. more general architectures, including overlapping receptive
fields, different phases and wave numbers for each node, is
currently studied and much more involved. Preliminary re-
sults show that, for instance, plateaus persist in overlapping
machines with a nonlinear output unit.

©

Ci ,LmE_ o J2m, (W1)Jom,(W2) Y, Ym,COL2M;Xy)
1,2~

><COS(2m2X2)—4J2m1+1(W1)J2m2+1(W2) Finally we would like to point out that in the case of
_ _ periodic activations a mapping exists between different types
X sin[(2my +1)X1]sin((2my+ 1)X;] of two-layer perceptrons. The architecture we discussed

above, where the output depends on shien of the hidden
= h he i distribution is d dunit activities (soft committee machingeis equivalent to a
=7—0. The average over the input distribution is denotedy, ok where the total output is a function of feductof

by (- -) and can be performed analytically as an integrationys pigden units(soft parity machine[12]). For instance,
over M independent two-dimensional Gaussian densitie%r N:2:1 architectures an@(x)=g(x)=sin( the out
1 . = - = 2 = L= e - 2 = ) ) - - :
V\)'('_th_ _<§'_>_ J<_y'E>;_ [(1)6] O =Qi=di-di, (y=1, and ;i Given by sifksin(og) +sinog) ]} = sinf2ksinTk(x,
( 'y'.>_ i : o . +X,)/2]cogk(x;—X)/2]}, which can be interpreted as a soft
Figure 2 shows the result of a numerical integration Ofparity machine with weight vectord, = (J,+J,)/2 and an
Egs.(13) in the limit »—0 where the quadratic term is ne- = © ' ~° Lo =TI
glected. The analytical results for typical initial conditions P

are in good agreement with simulations of a system \with I.K. acknowledges support from the Israel Academy of
=80 and#%=0.02. Science.

with Cj;=Aw;cosk), Ci;=A sin), ym=2—0mo, andA
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