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Learnability of periodic activation functions: General results
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On-line learning in the presence of continuous periodic activation functions is studied analytically. The
effect of the ambiguity~an infinite number of inputs with different local fields can produce the same output! on
the learnability is examined. A universal interplay between the general features of the activation function
~wave number, parity, etc.! and the critical learning rate is found. Analytical results are extended also to
multilayer architectures with nonlinear output units. Results are compared with simulations.
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The theory of learning has benefited to a great extent fr
the application of statistical physics methods, see e.g.,@1,2#
for reviews. Statistical mechanics provides the tools to inv
tigate, for instance, large neural networks@3#, learning a rule
from randomized example data. It allows one to calcul
typical properties, such as the generalization error, wh
quantifies the average amount of disagreement betweenstu-
dentand unknown rule.

One successful line of research concerns the physic
so-called on-line learning processes@3,4# and was initiated in
@5,6#. From a practical point of view, on-line learning is pa
ticularly attractive because it uses only the latest from a
quence of examples for training. This obviously reduces
storage needs and computational effort in comparison w
memory based off-line prescriptions. On the other hand,
very property makes it possible to investigate a variety
learning scenarios analytically. The learning dynamics is
scribed exactly in terms of coupled differential equations
self-averaging order parameters in the thermodynamic lim

A most remarkable outcome of this theory is that the p
formance of efficient on-line algorithms is, despite their si
plicity, comparable with that of sophisticated off-line o
batch prescriptions@6–9#. Among the different architecture
that have been studied in this framework are such dive
systems as the simple perceptron~e.g., @5,6#!, specific
multilayer networks of threshold units~e.g., @10,11#!, and
two-layered structures constructed from continuous u
@12–14#.

Apart from perhaps one exception, the so-called rever
wedge perceptron@15#, all networks investigated so far con
sist of units with monotonic activation functions, where t
most prominent examples are continuous sigmoidal or lin
units and discontinuous threshold neurons. For the latter
generalization error approaches its minimum value accord
to a power law with the number of examples, in general~e.g.,
@7,9#!. In contrast, an exponential decay is typical for n
works consisting of units with differentiable sigmoidal ac
vations, provided the learning rate is smaller than some c
cal value hc @12,13#. Furthermore, nontrivial transien
behavior of these systems, like the occurrence of quas
tionary plateau states in the learning dynamics, can be th
retically understood within this framework@11,13,14#.
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It remains an open question precisely which features
the activation functions determine the properties of the lea
ing network.~a! Does a universal behavior exist in the sen
that there is an interplay between general features of
activation function and, for instance, the critical learni
rate?~b! Is the above mentioned exponential asymptotic
cay a direct consequence of the continuous nature of
activation or is it crucial that the function is monotonic an
invertible?~c! How does the critical learning rate depend
the above properties?~d! What is the relevance of symme
tries in the transfer functions?~e! Will new classes of behav
ior emerge when the scope of possible characteristics is
tended?~f! What is the effect, if any, on the nature o
plateaus in the learning process of multilayer architectu
with nonlinear output units?

In order to address and investigate these questions
study in this paper neural networks with continuous but
riodic activation function. In such networks an infinite num
ber of different local fields or internal representations c
produce the same output. Due to this ambiguity an exam
$j,t(j)% contains less information about the rule than
cases where the transfer functions are invertible. We w
investigate here to what extent this property affects the
namics of learning.

Throughout the following we restrict the analysis
teacher-student scenarios with perfectly matching netw
architectures. Training is guided by the quadratic deviat
e(j)5@s(j)2t(j)#2/2, which compares the student’s re
sponses with the rule or teacher outputt for a given high-
dimensional input vectorjPRN. Accordingly, the generali-
zation error is defined as the average^e(j)& over the
distribution of inputs. Throughout this paper we will con
sider random vectorsj with independent, identically distrib
uted components of zero mean and unit variance.

Upon the presentation of a single example input-out
pair $jm,tm5t(jm)% the vectorWW of all adjustable param-
eters in the student network is updated according to the
lowing stochastic gradient descent prescription:

WW ~m!5WW ~m21!2
h

N
¹W WW e~jm!uWW ~m21! , ~1!

where the same learning rateh is used everywhere in the
3606 © 1998 The American Physical Society
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network. The vectorWW includes in the following only the
weights of the student network~input-to-hidden as well as
hidden-to-output!. We plan to study the adjustment of add
tional parameters like the phases of the considered activa
function in the formalism.

Note that so far only two-layered systems with linear o
put units have been treated analytically@13,14#. The consid-
eration of periodic activations enables us to extend this
malism to networks of several layers with nonlinear units
each layer. The details of the solution and its mathemat
insight will be presented after the discussion of the perc
tron.

As a first example we consider a teacher-student scen
with matching single unit networks. Normalized teach
weightsBPRN,B251 define the rule output

t~j!5g~y!5sin~ky1u! ~2!

with y5B•j for any N-dimensional input vectorj. The ad-
ditional parametersk andu fix the wave number and phas
of the periodic activation function, respectively.

The above mentioned ambiguity is most clearly studied
the single node. For sigmoidal activations,y is uniquely de-
termined by t and, assuming the activation function
known, each example provides a linear equation of the fo
B•j5g21(t). Here, however, an infinite number of overla
produces the same output:

t~yn!5t~yo! with yn5yo62pn/k, nPN. ~3!

Due to this ambiguity, an example$j,t% contains less infor-
mation about the unknown rule than in cases with sigmoid
i.e., invertible monotonic transfer functions.

In general one would expect that the density of valuey
has a finite width for realistic data. The assumed spec
input distribution results in a Gaussian density with^y&50
and ^y2&51. The numberMeff of overlapsy in the range
21,y,1, which can be assigned to the same output,
creases linearly with~large! k. Thus the wave number is
direct measure of how pronounced the effect of the amb
ity will be.

The complexity of learningP examples in the case o
invertible monotonic transfer functions~like tanh) is the
same as solvingP linear equations withN variables (N
weights of the student!. In contrast, the case of learningP
examples with periodic activation functions results in

Meff}kP ~4!

possible different sets ofP linear equations, due to the am
biguity ~3!. Therefore, the learning process in the case
periodic functions has to overcome two difficulties:~I! to
find the most appropriate set of equalities among expon
tially many with the size of the training setP and~II ! then to
solve the set of equalities as for monotonic activation fu
tions.

The single weight vectorJPRN parametrizes the studen
hypothesiss(j)5sin(kJ•j1u) about the unknown rule
whereas the correct values ofu andk are taken to be known
in advance. Note that assuming knowledge of the wave n
ber does not constitute a restriction of our model since
norm of the student weights will not be fixed in the learni
on
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process. Thus, any mismatched valuek̂Þk in the student
could be compensated for by tuningQ5J2 such thatAQ k̂
5k.

In order to calculate the generalization error we obse
that the randomness of the input enters only through
quantitiesx5J•j andy5B•j, which are distributed accord
ing to a two-dimensional Gaussian density with^x&5^y&
50, ^x2&5Q, ^y2&51, and^xy&5R5J•B. We obtain

eg5 1
2 @12A21@A12 1

2 ~e22k2Q1e22k2
!#cos~2u!# ~5!

whereA65e2k2(11Q62R)/2.
Learning proceeds according to the on-line gradient

scent prescription~1!, here the change of weights upon pr
sentation of example$jm,tm5g(ym)% is

J~m!5J~m21!2
h

N
~sm2tm!k cos~kxm1u!jm

with xm5J~m21!•jm. ~6!

Following the method described at length in e.g.,@12,13#,
recursion relations for the self-averagingR(m)5J(m)•B
and Q(m)5J2(m) are derived which become, in the lim
N→`, differential equations in continuous timea5m/N.
The average over the sequence of independent vectorsj is
performed as outlined above and one obtains the determ
tic equations of motion

dR

da
5

hk2

2
$@~R11!A122Re22k2Q#cos~2u!2~R21!A2%,

~7!

dQ

da
5hk2$@~R1Q!A122Qe22k2Q#cos~2u!2~Q2R!A2%

1
h2k4

8
@2~e22k2Q2e22k2

2B21A1!cos~2u!13

2A2
4 22A21~2B12e28k2Q2A1

4 !cos~4u!# ~8!

with A6 from Eq. ~5! andB65e2k2(119Q66R)/2.
First we observe that for all values ofu a configuration

with R5Q51 that corresponds to perfect learning (eg50)
is a fixed point of Eqs.~7! and ~8!. The corresponding lin-
earization of the system is of the formd/da (R,Q)Á

5M (1,1)(12R,12Q)Á where the matrixM (1,1) has one
eigenvalue that is linear inh and always negative. The sec
ond one has a quadratic term inh and becomes positive fo
learning rates larger than the critical value

hc5
8

k2

e22k2
cos~2u!11

31e28k2
cos~4u!14e22k2

cos~2u!
,

which indicates that perfect learning is only possible forh
,hc . Provided this condition is satisfied, the generalizat
error decreases likeeg}exp@2la# for large a, i.e., its
asymptotic behavior is similar to the case of invertible tra
fer functions.

The generic behavior of the critical learning rate for sm
wave numbersk→0 is hc}k22. For the special caseu
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50 @g(x)5sin(kx)# we obtain, for instance,hc'2/k2, which
coincides with the well-known result for the linear perce
tron @3#. Note that by expanding Eq.~6! for k→0 and u
50 one obtains a linear update of the formJ(m)2J(m
21)52(h2k2)(xm2ym)jm.

Only the exceptional,even activation function g(x)
5cos(kx) (u5p/2) yields the much larger value 2/(3k4) for
small wave numbers. One can show thathc(u5p/2)
.hc(u50) holds true for all values ofk. This seems to
contradict the intuition that learning should be harder
even activation functions since the ambiguity affects
most probable inputs~small local fields!. Note, however, that
the above consideration concerns the asymptotic proper
but the initial decrease ofeg for R!1 is faster for the acti-
vation sin(kx).

It can be shown that the interplay of the general expa
able activation functiong(x) and the critical learning rate
has the following form:

lim
k→0

g~x!5ao1 (
m5m0

`

am ~kx!m ⇒ hc}k22m0 ~9!

in the limit k→0.
The limit k→` corresponds to a highly oscillatory beha

ior of the activation. Independent of the specific value ou
one finds that the critical rate decreases likehc}1/k2 in this
limit. This universal behavior reflects that successful lea
ing is hindered drastically by the ambiguity discussed abo

The exceptional properties of the activationg(x)
5cos(kx) are related to the fact that in this particular case
output~and thus alsoeg) is invariant under a sign change o
all weights (a150), which is reflected in the existence o
fixed points withR50 in the system~7!, ~8!.

In the limit h→0 the quadratic term in Eq.~8! can be
neglected and learning proceeds on a rescaled time scaleha.
The following features distinguish the behavior in compa
son to invertible activation functions.~a! The number of fixed
points: In addition to the attractive configuration (R51,Q
51) we find, independent ofk, for the cos activation, the
attractive fixed point (21,1) with eg50 due to symmetry
and repulsive stationary states~0,0! and ~0,1/3!. Learning
requires initial knowledgeuR(0)u.0 in order to break the
6J symmetry. In finite systems fluctuations will guarant
R(0)5O(1/AN), a macroscopic overlap will be achieve
after a characteristic time of order lnN @14#. For the sin case
Fig. 1 displays the corresponding fixed points of the syst
for a specific value ofk. For a nonzeroh,hc , the number
of repulsive fixed points increases withk, which also reflects
the ambiguity Eq.~4!. ~b! Flow Q→`: The solid line in Fig.
1 marks a separatrixQ̃(R): for Q.Q̃(R) the student is un-
able to learn and the length ofJ diverges asa→`. This can
be understood in the context of the ambiguity problem
largeQ corresponds to an effective large wave numberAQk
in the student unit.

Next we extend the formalism to networks with one h
den layer and nonlinear hidden and output units. We c
sider a rule given by the nonoverlapping teacher netw
NM:M :1 where the NM-dimensional input j
5(j(1), . . . ,j(M )) consists ofM disjoint subsets, each o
which is available to only one of the hidden nodes
-
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t5g̃S (
i 51

M

v ig~yi !D , where yi5Bi•j~ i !, ~10!

where M is the number of hidden units andg(g̃) are the
activations of the hidden~output! units andv i denote the
hidden to output weights. The student is assumed to have
same architecture and internal fieldsxi5Ji•j( i ). A learning
process of the form~1! is taken to modify the adjustabl
weights$Ji ,wi% i 51,2, . . . ,M .

For simplicity we concentrate on the prototype multilay
net with M52 hidden units withg̃(x)5g(x)5sin(kx). The
explicit form of the student output iss5sin$k@w1sin(kx1)
1w2sin(kx2)#% and the quadratic deviation ise5(s2t)2/2.
Using standard trigonometric identities,s ~similarly t) can
be rewritten:

s5sin@w1k sin~kx1!#cos@w2k sin~kx2!#

1cos@w1k sin~kx1!#sin@w2k sin~kx2!#. ~11!

Furthermore, relations of the form

sin@w sin~kx!#52 (
m50

`

J2m11~w!sin@~2m11!kx# ~12!

enable us to write the output as a linear combination of p
ceptrons with all wave numbersmk, integerm, weighted by
appropriate Bessel functions. The trigonometric relation~11!
and the expansion~12! are crucial for the extension of th
analysis to multilayered networks. Such mathematical s
plifications are not available in the case of sigmoidal acti
tion functions.

We obtain the equations of motion

dRi /da5h^d i1yi&, dQi /da52h^d i1xi&1h2^d i1
2 &,

dwi /da5h^d i2yi&,
~13!

whered1m is given by

FIG. 1. Fixed points (d) for g(x)5sin(x) in the limit h→0,
solid lines display the zeros ofdR/da ~7!, dashed lines correspon
to dQ/da50 in the allowed regionQ.R2. Arrows indicate the
direction of the temporal evolution according to the signs of
right-hand side of Eqs.~7! and ~8!.
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Cim (
m1,250

`

J2m1
~w1!J2m2

~w2!gm1
gm2

cos~2m1x1!

3cos~2m2x2!24J2m111~w1!J2m211~w2!

3sin@~2m111!x1#sin@~2m211!x2#

with Ci15Dwicos(xi), Ci25D sin(xi), gm522dm,0 , and D
5t2s. The average over the input distribution is denot
by ^•••& and can be performed analytically as an integrat
over M independent two-dimensional Gaussian densi
with ^xi&5^yi&50, ^xi

2&5Qi5Ji•Ji , ^yi
2&51, and

^xiyi&5Ri5Ji•Bi @16#.
Figure 2 shows the result of a numerical integration

Eqs.~13! in the limit h→0 where the quadratic term is ne
glected. The analytical results for typical initial condition
are in good agreement with simulations of a system withN
580 andh50.02.

FIG. 2. Learning curves for 2N:2:1 with g(x)5sin(x). Solid
lines are the result of numerical integration, Eq.~13!, with h→0,
symbols correspond to simulations withN580, h50.02 averaged
over 20 independent runs. Standard error bars would be app
mately the size of the symbols.
te
d
n
s

f

Again, the configuration of perfect learning,eg50, is a
fixed point of the dynamics~13!, which is attractive for small
enough learning rates. In the limitk→`, the critical value is
found to behc}1/k4 independent of the actual phases in t
activation of different units.

In contrast, whenk→0, one obtains, for instance, fo

g̃(x)5g(x)5sin(kx) @cos(kx)# the critical rate hc

}1/k4 (1/k8), respectively. The general rule from which th
scaling ofhc with small k can be obtained is

hc}1/~¹Je!2

for generalJi . One derivative is due to the form of th
learning algorithm, Eq.~1!, and the second factor stems fro
the asymptotic expansionJi→Bi . This is consistent with the
above result~9! for the single node.

The extension of the presented analytical approach
more general architectures, including overlapping recep
fields, different phases and wave numbers for each nod
currently studied and much more involved. Preliminary
sults show that, for instance, plateaus persist in overlapp
machines with a nonlinear output unit.

Finally we would like to point out that in the case o
periodic activations a mapping exists between different ty
of two-layer perceptrons. The architecture we discus
above, where the output depends on thesumof the hidden
unit activities ~soft committee machine!, is equivalent to a
network where the total output is a function of theproductof
its hidden units~soft parity machine@12#!. For instance,
for N:2:1 architectures andg̃(x)5g(x)5sin(kx) the out-
put is given by sin$k@sin(kx1)1sin(kx2)#%5sin$2ksin@k(x1
1x2)/2#cos@k(x12x2)/2#%, which can be interpreted as a so
parity machine with weight vectorsJ65(J16J2)/2 and an
output wave number 2k.

I.K. acknowledges support from the Israel Academy
Science.
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